Abstract
Structural, mechanical, and dimensional evolutions of silicon carbide (SiC) induced by heavy-ion irradiations are studied by means of Rutherford backscattering spectrometry and channeling (RBS/C), nanoindentation, and surface profilometry measurements. 4H- and 6H-SiC single crystals were irradiated with 4 MeV Au2+ and 4 MeV Xe+ ions at room temperature (RT) or 400 °C. Using a Monte Carlo program to simulate the RBS/C spectra (MCCHASY code), we find that Au ion irradiation at RT induces a total silicon sublattice disorder related to full amorphization at a dose of about 0.4 displacement per atom (dpa). A two-step damage process is found on the basis of the disordered fractions deduced from RBS/C data. Complete amorphization cannot be reached upon both Au and Xe ion irradiations at 400 °C up to about 26 dpa because of the dynamic annealing of defects. When complete amorphization is reached at RT, the Young’s modulus and Berkovich hardness of irradiated 6H-SiC samples are lower by, respectively, 40% and 45% than those of the virgin crystals. The out-of-plane expansion measured by surface profilometry increases versus irradiation dose and the saturation value measured in the completely amorphous layer (normalized to the ion projected range) is close to 25%. We show that the modifications of the macroscopic properties are mainly due to the amorphization of the material. The macroscopic elasticity constants and dimensional properties are predicted for a composite material made of crystalline matrix containing dispersed amorphous inclusions using simple analytical homogenization models. Voigt’s model seems to give the best approximation for disordered fractions larger than 20% in the second step of the damage process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.