Abstract

The AMoRE is an experiment to search for neutrinoless double-beta decay of 100Mo in molybdate crystal scintillators using a cryogenic detection technique. The crystals are equipped with metallic magnetic calorimeter (MMC) sensors that detect both phonon and photon signals at temperatures of a few tens of mK. Simultaneous measurements of thermal and scintillation signals produced by particle interactions in the crystals by MMC sensors provide high energy resolution and efficient particle discrimination. AMoRE-Pilot, an R&D phase with six 48deplCa100MoO4 crystals and a total mass of ∼1.9 kg in the final configuration, operated at the 700 m deep Yangyang underground laboratory (Y2L). After completion of the AMoRE-Pilot run at the end of 2018, AMoRE-I with a ∼6 kg crystal array comprised of thirteen 48deplCa100MoO4 and five Li2100MoO4 crystals is currently being assembled and installed at Y2L. We have secured 110 kg of 100Mo-isotope-enriched MoO3 powder for the production of crystals for the AMoRE-II phase, which will have ∼200 kg of molybdate crystals and operate at Yemilab, a new underground laboratory located ∼1,100 m deep in the Handeok iron mine that is currently being excavated and with a scheduled completion date of December 2020. AMoRE-II is expected to improve the upper limit on the effective Majorana neutrino mass to cover the entire inverted hierarchy neutrino mass region: 20–50 meV, in the case when no such decays are observed. Results from AMoRE-Pilot and progress of the preparations for AMoRE-I and AMoRE-II are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.