Abstract

Novel a-MoO3nanorods coated with SnS2 nanosheets core-shell nanorod composite has been synthesized via two hydrothermal routes. More importantly, as the anode materials for lithium ion batteries, the MoO3@SnS2 core-shell nanorod composite has not been investigated in detail. The one-dimensional core-shell nanorod composite has high surface area, which could offer larger contact area for material and electrolyte. In addition, there are large enough inner spaces between the SnS2nanosheets, which provides an efficient transport of electrons and ions. In addition, the core-shell nanostructure could accommodate the volume changes caused by the charge/discharge reaction and could avoid the agglomerations and pulverization of anode materials.As anode materials for LIBs, the as-prepared MoO3@SnS2 core-shell nanorod composite displayed 1663.2mAh/g discharge capacity in the first cycle at the current of 60mA/g. After 100 cycles, the remained capacity is 568.2mAh/g, which is both higher than that of a-MoO3and SnS2. Considering the excellent electrochemical performance with high capacity and good cycling stability, the as-prepared the MoO3@SnS2 core-shell nanorod composite has the potential to be the next generation anode materials for lithium ion batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.