Abstract

Bradykinin-related peptides (BRPs) represent one of the most widespread and closely studied families of amphibian defensive skin secretion peptides. Apart from canonical bradykinin (RPPGFSPFR) that was first reported in skin extracts of the European brown frog, Rana temporaria, many additional site-substituted, N- and/or C-terminally extended peptides have been isolated from skin extracts and secretions from representative species of the families Ranidae, Hylidae, Bombinatoridae and Leiopelmatidae. The most diverse range of BRPs has been found in ranid frog skin secretions and this probably reflects the diversity and number of species studied and their associated life histories within this taxon. Amolops (torrent or cascade frogs) is a genus within the Ranidae that has been poorly studied. Here we report the presence of two novel BRPs in the skin secretions of the Chinese Wuyi Mountain torrent frog ( Amolops wuyiensis). Amolopkinins W1 and W2 are dodecapeptides differing in only one amino acid residue at position 2 (Val/Ala) that are essentially (Leu 1, Thr 6)-bradykinins extended at the N-terminus by either RVAL (W1) or RAAL (W2). Amolopkinins W1 and W2 are structurally similar to amolopkinin L1 from Amolops loloensis and the major BRP (Leu 1, Thr 6, Trp 8)-bradykinin from the skin of the Japanese frog, Rana sakuraii. A. wuyiensis amolopkinins were separately encoded as single copies within discrete precursors of 61 amino acid residues as deduced from cloned skin cDNA. Synthetic replicates of both peptides were found to potently antagonize the contractile effects of canonical bradykinin on isolated rat ileum smooth muscle preparations. Amolopkinins thus appear to represent a novel sub-family of ranid frog skin secretion BRPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call