Abstract

Our study evaluated the use of amniotic membrane-derived stem cells for repairing osteochondral defects in a weight-bearing area in rabbits. Twenty-four 3-month-old male or female New Zealand white rabbits were selected. The rabbits were randomly divided into 3 groups of eight, according to the treatment received for an experimentally inflicted femoral medial malleolus lesion, group I received a human acellular amniotic membrane seeded with bone marrow-derived mesenchymal stem cells (HAAM-BMSCs) implant; group II received a simple HAAM implant and the control group received no experimental lesion or treatment. The rabbits were sacrificed at 12 and 24 weeks after the procedures (4 rabbits in each time-point) and the cartilage repair status in each animal was evaluated under the microscope. The tissue of the HAAM-BMSCs group grew well covering an area in the visual field that was significantly larger than that of the HAAM group (p<0.05). The percentage of collagen II-positive area in the HAAM-BMSC group was significantly higher than that in HAAM group (p<0.05). The number of chondrocytes determined by toluidine blue staining was higher in the HAAM-BMSC group than that in the HAAM group (p<0.05). The Wakitani scores of the HAAM and HAAM-BMSC groups were significantly higher (worse) than those of the normal control group (p<0.05), but the score in the HAAM-BMSC group was significantly lower than that in the HAAM group (p<0.05). The Wakitani scores in the HAAM-BMSC group were not different between the two time-points taken. Based on our findings, the amniotic membrane-derived stem cells had a good therapeutic effect in repairing the osteochondral defects in the weight-bearing area, and the number of chondrocytes in the injured area was increased significantly, which accelerated the repair of the damaged tissue in rabbits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.