Abstract

Nitrides represent an intriguing class of functional materials with a broad range of application fields. Within the past decade, the ammonothermal method became increasingly attractive for the synthesis and crystal growth of nitride materials. The ammonothermal approach proved to be eminently suitable for the growth of bulk III-nitride semiconductors like GaN, and furthermore provided access to numerous ternary and multinary nitrides and oxonitrides with promising optical and electronic properties. In this minireview, we will shed light on the latest research findings covering the synthesis of nitrides by this method. An overview of synthesis strategies for binary, ternary, and multinary nitrides and oxonitrides, as well as their properties and potential applications will be given. The recent development of autoclave technologies for syntheses at high temperatures and pressures, in situ methods for investigations of crystallization processes, and solubility measurements by ultrasonic velocity experiments is briefly reviewed as well. In conclusion, challenges and future perspectives regarding the synthesis and crystal growth of novel nitrides, as well as the advancement of autoclave techniques are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.