Abstract

Membrane fouling and ammonium transmembrane diffusion simultaneously pose great challenges in membrane-based pre-concentration of domestic wastewater for efficient subsequent resources recovery (i.e., energy and nutrients). Herein, amine-functionalized osmotic membranes were fabricated by optimizing the grafting pathway of polyamidoamine (PAMAM) dendrimer to mitigate fouling and ammonium transmembrane diffusion. Compared to the control membrane, the PAMAM-grafted membranes with abundant primary amine groups possessed substantially increased hydrophilicity and positive charges (i.e., protonated primary amines) and thus exhibited superior anti-fouling capability and ammonium selectivity. With further increasing the PAMAM grafting ratio, the membrane exhibited a steady enhancement in ammonium selectivity and eventually achieved an ultra-high ammonium rejection of 99.4%. Nevertheless, the anti-fouling capability of such ammonium ultra-selective membrane was weakened due to the suppression of the adverse impact of excessive positive charges over the beneficial effect of increased surface hydrophilicity. This in turn leads to a drop of ammonium rejection below 90% during domestic wastewater concentration. This study demonstrates that the membrane with a moderate primary amine loading could achieve the highest anti-fouling capability with only less than 10% flux decline and meanwhile maintain an excellent ammonium rejection above 94% during raw domestic wastewater concentration. This work provides theoretical guidance for fabricating simultaneously enhanced anti-fouling and ammonia-rejecting membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.