Abstract

Ammonium phosphate slurries are produced from impure phosphoric acid that contains Fe(III), Al(III) and Mg(II) ions. The insolubility of these metal ions and the onset of solid formation determined as a function of pH or mole ratio (MR) of ammonia to phosphoric acid were consistent with the trend for the pH of formation of the first hydrolysis product that decreases in the following order: Fe(III) < Al(III) < Mg(II). The hydrolysis products of Fe(III) formed at pH > 2.0 or MR > 0.5 initiate ammonium phosphate crystallization, reduce the size of particles formed and generate attractive interparticle forces. Similarly, the Al(III) hydrolysis products formed later at pH > 2.6 MR > 0.7), will also initiate further crystallization, adsorb on particles and produce attractive forces. The attractive forces and the high number concentration of particle—particle interactions are responsible for the increased viscosity and non-Newtonian flow behavior displayed at increasing Fe(III) and Al(III) concentration. Mg(II) ions are not hydrolyzed at MR < 1.0 so its effect on rheology is negligible and its effect at MR < 1.0 is also small as its concentration is much smaller than that of Fe(III) and Al(III) ions. The change in slurry viscosity with the degree of neutralization is also explained in terms of particle size distribution, solubility and solids concentration variations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.