Abstract

This paper presents burning rates as a function of pressure of several propellant formulations based on ammonium perchlorate (AP) and hydroxyl-terminated polybutadiene cured by isophorone diisocyanate, many of which exhibit significantly low (nearly zero or negative) values of the pressure exponent of the burning rate in distinct pressure ranges, termed as plateau burning rate trends. The propellants contain a bimodal distribution of AP particles with the size of the coarse and fine particles within narrow ranges whose mean values are widely separated. Two mean sizes of fine particles were considered for the propellant formulations in the present work, namely, 5 and 20 µm. These choices are based on the mid-pressure extinction behavior exhibited by the matrix of fine AP and binder contained in the propellants but when tested alone over a wide range of fine AP size and pressure. The propellants that include the fine AP/binder matrixes exhibiting a mid-pressure extinction, in turn, exhibit the plateau burning rate trends within the corresponding pressure ranges. A plateau is also observed at elevated pressures in the burning rates of some formulations, which is related to the diminishing relative importance of the near-surface leading-edge region of the oxidizer/fuel diffusion flame in the gas-phase combustion zone. The choice of the coarse AP size influences the exact pressure range within the mid-pressure extinction domain of the matrix where the propellant exhibits the plateau burning rate trends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.