Abstract

Previous investigation on the impact of crude oil on the growth of tropical legumes and its effect on nitrogen dynamics in wetland ultisol showed that oil contamination reduced N uptake by plants but increased N accumulation in soil microbial biomass. Moreover, the presence of hydrocarbons widened the C/N ratio in soil and led to more available N being immobilized by soil microorganisms. The present study was carried out to evaluate the activity of ammonium oxidizing bacteria (AOB) and their nitrification potential rate (NPR) in wetland soil under a remediation course. Mineralization studies showed that ammonium-N levels decreased while nitrate-N increased progressively in the uncontaminated soil (control) cultivated with leguminous plants (cover crops) during the 12 weeks remediation period. However, the remediated soils were affected in different ways. The experimented soil cultivated with Centrosema pubescens had higher mineral nitrogen (NH4-N, NO3-N, NO2-N, Total N and P) than soil cultivated with Calopogonium mucunoides and Pueraria phaseoloides. AOB counts recorded were in the ranged, 2.25 × 102 - 2.66 × 105, 2.31 × 102 - 2.11 × 104 and 4.25 × 102 - 2.98 × 104 respectively. The highest NPR was found in uncontaminated soil (11.68 - 60.92 nmol N/g dry weight soil (DWS)) followed by soil treated with poultry manure (9.65 - 24.86 nmol N/g DWS/h), NPK (7.88 - 39.45 nmol N/g DWS/h) and in the oil-contaminated soil (0.11 - 1.87 nmol N/g DWS/h). The relations between NH4-N concentration and NPR in soil cultivated with Centrosema (r = 0.852), Calopogonium (r = 0.745) and Pueraria (r = 0.722) were positively significant at 95% confidence limit. Similarly the relations between AOB density and NPR for Centrosema (r = 0.654; P = 0.05), Calopogonium (r = 0.588; P = 0.05) and Pueraria (r = 0.518; P = 0.05) were significant. The findings imply that nitrification potential of crude oil- contaminated soil differs significantly with the nutrient amendment/treatment technique adopted for remediation. Our research has shown that treatment of uncontaminated soil with cover crops increased AOB and nitrification rate. More so, contaminated soil treated with poultry manure and NPK-fertilizer, cultivated with covers crops resulted in remarkable reduction in hydrocarbons content and increased population of nitrifiers and nitrification potential rates of wetland soil over time. However, contaminated soil treated with poultry manure and cultivated with Centrosema pubescens is more effective in bioremediation of crude oil-contaminated soil.

Highlights

  • Nitrogen is a key element in many compounds of plant cells and its availability for plants is an important limiting factor for crop production globally [1]

  • Our research has shown that treatment of uncontaminated soil with cover crops increased ammonium oxidizing bacteria (AOB) and nitrification rate

  • More so, contaminated soil treated with poultry manure and NPK-fertilizer, cultivated with covers crops resulted in remarkable reduction in hydrocarbons content and increased population of nitrifiers and nitrification potential rates of wetland soil over time

Read more

Summary

Introduction

Nitrogen is a key element in many compounds of plant cells and its availability for plants is an important limiting factor for crop production globally [1]. The bulk of nitrogen is present in the gaseous or organic form. Plants use nitrogen almost entirely in the inorganic form, through biological nitrogen fixation. In this process, atmospheric nitrogen is converted to inorganic nitrogen (NH3), and through nitrogen mineralization, organic nitrogen is converted to inorganic forms (ammonium and nitrate). Atmospheric nitrogen is converted to inorganic nitrogen (NH3), and through nitrogen mineralization, organic nitrogen is converted to inorganic forms (ammonium and nitrate) Both nitrogen fixation and mineralization are brought about by the activities of soil microorganisms. Organic nitrogen is first converted to ammonium (

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call