Abstract

Attenuation of groundwater ammonium (NH4+) is expected to occur through redox reaction and adsorption of the riverbank. Previous studies determined that NH4+ mostly degraded through nitrification along subsurface flow, however, the adsorption capacities of riverbanks were always ignored in the NH4+ reduction processes. In this study, field experiments were conducted in the Fuliji section of the Xiaosuixin River, China, to understand NH4+ transport and attenuation under rainfall events-induced river and groundwater interactions. The results indicated that the NH4+ concentration in river water increased significantly after heavy rainfall events and reached a peak of about 5.88 mg L−1, and the lag time was more than 2 weeks compared with the river peak stage. Adsorption plays a dominant role in attenuation of NH4+ in riverbank with high amounts of organic materials and clay minerals, reducing its concentration to less than 0.05 mg L−1. A two-dimensional lateral exchange and transport model of NH4+ was developed and calibrated against observations in the aquifer, and an exponential reduction pattern of NH4+ was identified. The model's possible implications about the effects of varying hydrologic changes (i.e., peak stage and lag time differences between river and groundwater) on NH4+ transport were also discussed. Thus, the effects of river-groundwater interactions on nitrogen pollution should be taken into consideration in river regulation strategies in order to ensure proper hydrogeochemical functioning of river–aquifer interfaces and related ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.