Abstract

A new composite adsorbent (AMP@MOF-76(Sm)) grafted ammonium molybdophosphate onto MOF-76(Sm) was synthesized via a solvothermal method and well-characterized by SEM-EDS, particle size analysis, N2 adsorption-desorption isotherms, TG, FT-IR, XRD and XPS analysis. The adsorption behaviors of Rb+ and Cs+ on synthesized AMP@MOF-76(Sm) were investigated depending on the parameters of solution pH, ionic strength, contact time, ion concentration and temperature. The adsorbent can adsorb Rb+ and Cs+ from the solution when the solution pH ranged from 4.0 to 10.0 and the coexisted ion (Na+) has little effect on the adsorption amounts of both Rb+ and Cs+. The adsorption kinetic data fitted well with pseudo-second order kinetic models. The adsorption equilibrium of Rb+ and Cs+ on AMP@MOF-76(Sm) is better explained by the Langmuir isotherm model and the maximum adsorption amounts for Rb+ and Cs+ are 0.490 ​mmol ​g−1 and 0.434 ​mmol ​g−1, respectively. Furthermore, the AMP@MOF-76(Sm) could be easily reused at least four times using 3.0 ​mmol ​L−1 ammonia nitrate as the eluent. The mechanism of the adsorption of Rb+ and Cs+ is proposed to be a combination of electrostatic attraction and ion exchange mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.