Abstract

AbstractThe influence of NH4+ on protein accumulation was examined by growing suspension cultures of Rosa cv. Paul's Scarlet on two defined media. Both contained 1920 μmol of NO3− but only one contained 72.8 μmol of NH4+. At the conclusion of a 14‐day growth period, cultures grown with NH4+ possessed twice as much protein as cultures grown without NH4+. The influence of NH4+ did not appear to be a substrate effect, since the amount of NH4+ provided accounted for only 10% of the nitrogen recovered in protein.The provision of NH4+ in the starting medium increased the activity (μmol substrate. h−1· g−1 fr wt) of glutamate dehydrogenase and glutamate synthase, and reduced the activity of glutamine synthetase. A comparison of the total activity per culture for each of these enzymes with the rate of nitrogen incorporation into protein showed that the enzymatic potential of glutamine synthetase and glutamate dehydrogenase greatly exceeded the actual in vivo rate of nitrogen assimilation through the respective pathways. Thus it was concluded that the availability of either of these enzymes does not limit nitrogen assimilation in rose cells and the fluctuations in their level brought about by NH4+ was of no physiological importance.The activity of glutamate synthase per culture approximated the rate of nitrogen incorporation into protein during early stages of growth, and for that reason may have limited nitrogen assimilation or caused a diversion of nitrogen through the alternative pathway to glutamate catalyzed by glutamate dehydrogenase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.