Abstract
Sodium dodecyl sulfate (SDS) is a strong surfactant that is widely used in protein sample preparation. While protein and peptide samples containing up to approximately 1% SDS can be analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) using a two-layer matrix/sample deposition method, the presence of SDS in a protein sample generally degrades mass resolution and mass measurement accuracy. This degradation in performance is found to be related to the formation of sodium-protein adducts in the MALDI process. If the instrument resolving power is insufficient to separate these adduct peaks from the protonated molecular ion peak, peak broadening is observed in the protein molecular ion region, and as a result, the peak centroid shifts to a higher mass. In this work, we present a method using ammonium dodecyl sulfate as a viable alternative to SDS for protein sample preparation with much improved MALDI MS performance. Three non-sodium-based dodecyl sulfate surfactants, ammonium dodecyl sulfate (ADS), hydrogen dodecyl sulfate, and tris(hydroxymethyl)aminomethane dodecyl sulfate were investigated. Of the three surfactants tested, it is found that ADS gives the best performance in MALDI. For proteins with moderate molecular masses (i.e., up to approximately 25 kDa), the presence of ADS in a protein sample does not result in significant degradation in mass resolution and accuracy, and the protonated molecular ion peak is the dominant peak in the MALDI spectrum. The ammonium adduct ions dominate the MALDI spectra when the protein mass exceeds approximately 25 kDa; however, ADS still gives better results than SDS. The behavior of ADS in gel electrophoresis was also investigated. It is shown that cell extracts dissolved in ADS can be separated by normal SDS-polyacrylamide gel electrophoresis by simply mixing them with the SDS sample buffer. The application of ADS as the surfactant for protein solubilization with improved performance in MALDI analysis is demonstrated in the study of a detergent insoluble fraction from a Raji/CD9 B-cell lymphocyte lysate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.