Abstract
Rhodobacter sphaeroides maintained intracellular ammonium pools of 1.1 to 2.6 mM during growth in several fixed nitrogen sources as well as during diazotrophic growth. Addition of 0.15 mM NH4+ to washed, nitrogen-free cell suspensions was followed by linear uptake of NH4+ from the medium and transient formation of intracellular pools of 0.9 to 1.5 mM NH4+. Transport of NH4+ was shown to be independent of assimilation by glutamine synthetase because intracellular pools of over 1 mM represented NH4+ concentration gradients of at least 100-fold across the cytoplasmic membrane. Ammonium pools of over 1 mM were also found in non-growing cell suspensions in nitrogen-free medium after glutamine synthetase was inhibited with methionine sulfoximine. In NH4+-free cell suspensions, methylammonium (14CH3NH3+) was taken up rapidly, and intracellular concentrations of 0.4 to 0.5 mM were maintained. The 14CH3NH3+ pool was not affected by methionine sulfoximine. Unlike NH4+ uptake, 14CH3NH3+ uptake in nitrogen-free cell suspensions was repressed by growth in NH4+. These results suggest that R. sphaeroides may produce an NH4+-specific transport system in addition to the NH4+/14CH3NH3+ transporter. This second transporter is able to produce normal-size NH4+ pools but has very little affinity for 14CH3NH3+ and is not repressed by growth in high concentrations of NH4+.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.