Abstract

Proton transfer reaction mass spectrometry (PTR-MS) usually detects different types of compounds by changing the discharge gas to produce different reagent ions in the ion source. In the present work, a novel method of changing reagent ions, ammonia-assisted PTR-MS, was developed. Through an injection port bypass, ammonia was injected into a homemade PTR-MS device. A conventional PTR-MS apparatus with reagent ions H3O+(H2O)n (n = 0, 1, 2) can be converted to an ammonia-assisted PTR-MS with reagent ions NH4+.The new method was introduced to detect triacetone triperoxide (TATP) explosive material. Results showed that the sensitivity is enhanced more than 37 times compared with TATP detection using conventional PTR-MS and the limit of detection (LOD) could reach 1.3ppb. TATP in real complex matrixes can also be detected successfully using this method. Compared to conventional PTR-MS, ammonia-assisted PTR-MS has better sensitivity and better LOD for TATP detection, and the technique provides common users with a convenient and quick method to change reagent ions. The users of PTR-MS can easily obtain other reagent ions by injecting different assisted gases into an injection port to meet different detection needs. Graphical Abstract.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call