Abstract

The problematic anaerobic digestion (AD) of protein-rich substrates owing to their high ammonia content continues to hinder optimum methanation despite their high potential for offsetting greenhouse gas (GHG) emissions. This review focuses on the analyses of the sensitivity dynamics of key AD processes as well as the microbial interactions and exchanges that occur with them. Aside from the apparent increased risk associated with thermophilic ammonia-rich substrate AD, the marginally higher energy generation compared to mesophilic systems is not commensurate to the energy requirement. Moreover, while comparable FAN thresholds have been confirmed, TAN thresholds are susceptible to physical chemistry and so vary greatly. Profiling of the metabolic capability of front-end AD microbiome revealed Bacteroidetes, Firmicutes, and Synergistetes as some of the ammonia-resilient bacteria groups while Proteobacteria and Actinobacteria were the most fragile taxa. Besides the predominance of incomplete propionate oxidizing bacteria under ammonia stress conditions, syntrophic propionate oxidation (SPO) is usually shifted from the methylmalonyl CoA to the dismutation pathway. Furthermore, besides their different recoverability potentials, distinct methanogenic groups are differentially impacted by different ammonia species. Prevailing literature evidence suggests that conductive material assisted bioaugmentation with SAO-HM consortia, and in-situ H2 supplementation are the most effective for expediting electron transfer and relieving ammonia stress. These valuable insights should inform the design of targeted ammonia inhibition mitigation strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.