Abstract

Structural and dynamical properties of Sr2+ and Ba2+ dications in ammonia microsolvation environments were studied through hybrid density functional theory Born-Oppenhemier molecular dynamics of [Sr(NH3)n]2+ and [Ba(NH3)n]2+ clusters with n = 2, 3, 4, 5, 6, 8, 10, and 27. The largest cluster models were used to explore bulk phase solvation of Sr2+ and Ba2+ in liquid ammonia for which experimental data are available. Results are discussed in the light of previous results obtained for the [Mg(NH3)n]2+ and [Ca(NH3)n]2+ systems with the same methodology. Vibrational and EXAFS spectra are reported for the first time for [Sr(NH3)n]2+ and [Ba(NH3)n]2+ systems. It was found that alkaline earth dications have coordination numbers (CN) in ammonia as follows: Mg2+ (6) < Ca2+ (8) < Sr2+ (8.3) < Ba2+ (9.4). The coordination structures found turn out to be rather flexible with CN greater than six and these structures depart from the simple geometry of hexamine in the solid phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.