Abstract
The NH3-based selective catalytic reduction of NO x on monolithic zeolite catalysts has emerged as the technology of choice for heavy-duty diesel vehicles. A class of Cu-exchanged zeolite catalysts has been developed that have very high ammonia sorption capacity and can achieve high NO x conversion to N2 for a variety of transient conditions. In order to fully exploit the latest generation of SCR catalysts, an active, selective and robust post-SCR ammonia conversion system is needed to minimize the breakthrough of ammonia into the environment [1]. The goal of this study is to better understand the steady-state catalytic mechanism of post-SCR ammonia oxidative conversion and product selectivity on low-loading Pt-based catalysts and in so doing provide guidance in the development of a new class of ammonia slip catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.