Abstract

A promising method, ammonia modification, was developed for flotation separation of polycarbonate (PC) and polystyrene (PS) waste plastics. Ammonia modification has little effect on flotation behavior of PS, while it changes significantly that of PC. The PC recovery in the floated product drops from 100% to 3.17% when modification time is 13min and then rises to 100% after longer modification. The mechanism of ammonia modification was studied by contact angle, and Fourier transform infrared (FT–IR) and X–ray photoelectron spectroscopy (XPS) measurements. Contact angle of PC indicates the decline of PC recovery in the floated product is ascribed to an increase in surface wettability. FT–IR and XPS spectra suggest that ammonia modification causes chemical reactions occurred on PC surface. Flotation behavior of ammonia-modified PC and PS was investigated with respect to flotation time, frother concentration and particle sizes. Flotation separation of PC and PS waste plastics was conducted based on the flotation behavior of single plastic. PC and PS mixtures with different particle sizes are separated efficiently, implying that the technology possesses superior applicability to particle sizes of plastics. The purity of PS and PC is up to 99.53% and 98.21%, respectively, and the recovery of PS and PC is larger than 92.06%. A reliable, cheap and effective process is proposed for separation of PC and PS waste plastics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.