Abstract

BackgroundHepatic encephalopathy (HE) is a neurological complication resulting from acute or chronic liver disease. Hyperammonemia leading to astrocyte swelling and cerebral edema in combination with neuroinflammation including microglia activation, mainly contribute to the pathogenesis of HE. However, little is known about microglia and their inflammatory response, as well as their influence on astrocytic channels and astrocyte swelling under hyperammonemia.ObjectiveTo investigate the effects of ammonia on the microglial activation and morphology in different set-ups of an in vitro astrocyte-microglia co-culture model. Further, potential effects on glial viability, connexin 43 (Cx43) and aquaporin 4 (AQP4) expression were tested.MethodsPrimary rat glial co-cultures of astrocytes containing 5% (M5, representing "physiological" conditions) or 30% (M30, representing "pathological" conditions) of microglia were incubated with 3 mM, 5 mM, 10 mM and 20 mM ammonium chloride (NH4Cl) for 6 h and 24 h in order to mimic the conditions of HE. An MTT assay was performed to measure the viability, proliferation and cytotoxicity of cells. The microglial phenotypes were analyzed by immunocytochemistry. The expression of Cx43 and AQP4 were quantified by immunoblot analysis.ResultsA significant reduction of glial viability was observed in M30 co-cultures after incubation with 20 mM NH4Cl for 6 h, whereas in M5 co-cultures the viability remained unchanged. Microglial activation was detected by immunocytochemistry after incubation with 3 mM, 5 mM and 10 mM NH4Cl for 6 h and 24 h in M5 as well as in M30 co-cultures. The Cx43 expression was slightly increased in M30 co-cultures after 6 h incubation with 5 mM NH4Cl. Also, the AQP4 expression was slightly increased only in M5 co-cultures treated with 10 mM NH4Cl for 6 h. Under the other conditions, Cx43 and AQP4 expression was not affected by NH4Cl.ConclusionsThe novel aspect of our study was the significant microglial activation and decrease of viability after NH4Cl incubation in different set-ups of an in vitro astrocyte-microglia co-culture model, contributing to better understanding of pathophysiological mechanisms of HE. Hyperammonemia led to limited effects on Cx43 and AQP4 expression, the relevance of these minimal changes should be viewed with caution.

Highlights

  • Hepatic encephalopathy (HE) is a neurological complication resulting from acute or chronic liver disease

  • connexin 43 (Cx43) and aquaporin 4 (AQP4) expression was not affected by Ammonium chloride (NH4Cl)

  • Hyperammonemia led to limited effects on Cx43 and AQP4 expression, the relevance of these minimal changes should be viewed with caution

Read more

Summary

Introduction

Hepatic encephalopathy (HE) is a neurological complication resulting from acute or chronic liver disease. Hyperammonemia leading to astrocyte swelling and cerebral edema in combination with neuroinflammation including microglia activation, mainly contribute to the pathogenesis of HE. High ammonia level resulting from impaired liver function can cross the blood–brain-barrier and lead to morphological changes of astrocytes [1, 2]. Elevated ammonia and glutamine level in astrocytes results in increased water accumulation, cytotoxic astrocyte swelling and increased osmotic pressure contributing to cerebral edema, and correlates with the state of HE [5,6,7,8]. Microglial activation includes proliferation of microglia, change of the morphological phenotype from the resting ramified type (RRT) to the activated, rounded phagocytic type (RPT), expression of immune molecules and release of inflammatory mediators [16]. Media from ammoniatreated microglia cell culture added to cultured astrocytes contributes to astrocyte swelling suggesting a link between astrocytes and microglia under hyperammonemia conditions [18]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call