Abstract

Naked carp (Gymnocypris przewalskii), endemic to the saline-alkaline Lake Qinghai, have the capacity to tolerate combined hypoxia and high alkalinity. This study evaluated the effect of the interaction between carbonate alkalinity and hypoxia on ammonia excretion and blood gas variation in naked carp. Naked carp were subjected to normoxic, hypoxic and reoxygenation phases at two different carbonate alkalinity levels (CA0 = 0mmol/L; CA32 = 32mmol/L) for 4days. The ammonia excretion rate (JAmm) of the CA0 group rapidly decreased under hypoxia and recovered under normoxia for four consecutive days. The JAmm under CA32 also decreased under hypoxia and recovered to its previous level in the first 2days. However, the JAmm under CA32 was lower than that under CA0. The blood pO2, sO2 of CA0 and CA32 group was significantly reduced under hypoxia, after which both groups recovered. Blood pCO2 of the CA32 group was lower than CA0 throughout the experiment. There were no changes in haematocrit of the naked carp exposed to carbonate alkalinity and hypoxia. The alkaline water increased the pH of the blood and contributed to increased haemoglobin O2 affinity. Overall, the present findings reveal that naked carp is a tolerant species that can maintain main ionic homeostasis under severe alkalinity and hypoxia. The high alkaline water is beneficial for naked carp to adapt to hypoxic environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call