Abstract

Ammonia exchange with the atmosphere was studied in barley (Hordeum vulgare L. cv. Golf) grown in nutrient solution. Ammonia emission from the leaves was evident when NH4+ was taken up by the roots or when the plants had been subjected to darkness for 3 to 7 days. Also NH4+ concentrations in shoot and root tissues increased with these treatments while the activity of the ammonium assimilating enzyme glutamine synthetase (GS) increased in the roots with increasing NH4+ concentrations supplied to the medium and decreased in both shoot and root after 3 days of dark-induced senescence.Barley mutant plants (cv. Maris Mink) with only 66 or 47% of normal GS activity showed higher tissue NH4+ concentrations, higher NH3 emission and a greater sensitivity to increased temperature than wild type barley plants. The 66% GS mutant always showed higher NH3 emission compared to plants with the lowest GS activity (47%). probably due to a mechanism preventing tissue NH4+ concentrations from increasing too much. Apoplastic NH4+ and pH also increased in the GS mutants and estimated compensation points for NH3 were higher compared to wild type plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.