Abstract

Important amounts of plant nutrients excreted by humans are found in human urine. This provides the motivation for separating urine and recycling it, as fertiliser, back to agricultural land for food or fodder production. There are some housing estates in Sweden, both blocks of flats and separate houses, in which urine-separating toilets have been installed. The urine is stored in covered basins and spread on agricultural land. The objective of the present study was to evaluate the influence of application rate, application techniques and time on NH3 emissions after application of source-separated human urine. Human urine was spread at different application rates (10, 20 and 60 Mg ha–1) before sowing (year 1 to 3) and when the barley crop was 20-30 cm high (year 2). Urine was spread with a plot spreader using two band-application techniques (with bands 0.25 m apart): trailing hoses and trailing shoes. In spring, band-spread urine with trailing hoses was incorporated with a harrow four hours after application. The four (year 1 and 3) or six (year 2) treatments were organised into a randomised block design with three replicates. An equilibrium concentration method was used for measuring ammonia emissions directly after application. After spring application with trailing hoses and harrowing after four hours, the nitrogen [N] loss as ammonia [NH3], average over 3 years, was 5% of the applied N, irrespective of the application rate. The largest loss (10% of the applied N) was measured after application of 60 t of urine per hectare in spring. Hardly any NH3 loss occurred after incorporation with a harrow, with the exception of the highest application rate. Loss of NH3 was very low, close to 1% of the applied N, when the urine was incorporated directly into the soil in spring by band application with trailing shoes. Virtually no emissions were detected when the urine was applied to the growing crop, neither by trailing hoses nor by trailing shoes. This study shows that it is possible to apply human urine on bare soil or in growing barley crop with very low losses of N as NH3. Together with careful handling and the use of covered storage, nutrients in human urine could be recycled from households to agricultural land with low NH3 emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call