Abstract

A pulsed quantum-cascade distributed-feedback laser, temperature tunable from -41 degrees C to +31.6 degrees C, and a resonant differential photoacoustic detector are used to measure trace-gas concentrations to as low as 66 parts per 10(9) by volume (ppbv) ammonia at a low laser power of 2 mW. Good agreement between the experimental spectrum and the simulated HITRAN spectrum of NH3 is found in the spectral range between 1046 and 1052 cm(-1). A detection limit of 30 ppbv ammonia at a signal-to-noise ratio of 1 was obtained with the quantum-cascade laser (QCL) photoacoustic (PA) setup. Concentration changes of approximately 50 ppbv were detectable with this compact and versatile QCL-based PA detection system. The performance of the PA detector, characterized by the product of the incident laser power and the minimum detectable absorption coefficient, was 4.7 x 10-9 W cm(-1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.