Abstract

Excimer laser fragmentation-fluorescence spectroscopy is an effective detection strategy for NH(3) in combustion exhausts at atmospheric pressure and high temperatures. Two-photon photofragmentation of NH(3) with 193-nm light yields emission from the NH(A-X) band at 336 nm. There are no major interferences in this spectral region, and the sensitivity is at the parts per billion (ppb) level. Quenching of the NH(A) state radical by the major combustion products is measured and does not limit the applicability of the detection method. Detection limits in practical situations are of the order of 100 ppb for a 100-shot (1-s) average. This technique could prove useful in monitoring ammonia emissions from catalytic and noncatalytic NO(x) reduction processes involving ammonia injection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.