Abstract

Fe-BTC (iron 1,3,5-benzenetricarboxylic acid), a commercially available metal organic framework (MOF), was used as a sacrificial template to produce a series of carbon-embedded Fe catalysts upon its pyrolysis at different temperatures. The catalyst prepared by pyrolyzing Fe-BTC at 400 °C under flowing N2 provided a high graphitic degree on the carbon support hosting highly dispersed Fe species at a Fe loading of 34 wt%. Performance measurements on ammonia decomposition to produce COx-free hydrogen showed that this catalyst provided an ammonia conversion of 73.8% at a space velocity of 6000 cm3 NH3 h−1 gcat−1 and at 500 °C for at least 120 h. This stable performance, exceeding that of some of the best non-noble metal catalysts, was associated with the presence of highly-dispersed Fe species at a significantly high Fe loading, embedded in a carbonaceous shell. The presence of the carbonaceous shell not only protected the active species against sintering, but also made them electron rich owing to its high level of graphitization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.