Abstract
Ammonia binds to two sites in the oxygen-evolving complex (OEC) of Photosystem II (PSII). The first is as a terminal ligand to Mn in the S2 state, and the second is at a site outside the OEC that is competitive with chloride. Binding of ammonia in this latter secondary site results in the S2 state S = (5)/2 spin isomer being favored over the S = (1)/2 spin isomer. Using electron paramagnetic resonance spectroscopy, we find that ammonia binds to the secondary site in wild-type Synechocystis sp. PCC 6803 PSII, but not in D2-K317A mutated PSII that does not bind chloride. By combining these results with quantum mechanics/molecular mechanics calculations, we propose that ammonia binds in the secondary site in competition with D1-D61 as a hydrogen bond acceptor to the OEC terminal water ligand, W1. Implications for the mechanism of ammonia binding via its primary site directly to Mn4 in the OEC are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.