Abstract

We investigated the protective effects of amla (Emblica officinalis) on the pathogenesis of oxidative stress (OS) and inflammatory response in hypothyroid rats fed with a high-fat diet (HFD) as an experimental model of hypothyroidism (HT) with obesity. A total of 80 female wistar rats (5-months-old) were divided into eight different groups. Propylthiouracil (PTU) and HFD were used to induce the experimental HT and obesity, respectively. The euthyroid and hypothyroid rats were fed either normal chow or HFD with and without amla extract (AE, 100 mg/kg bw/day) for 6 weeks. The blood and tissues, liver and kidney OS and inflammatory parameters were studied using appropriate biochemical and molecular techniques. PTU and HFD per se caused OS and inflammatory response as evidenced by increased plasma MDA, TNF-α, CRP and GPx in association with decreased levels of TAS and reduced glutathione (GSH). The proteomic analysis revealed that the expressions of pERK, pP38, TNF-α, IL6, COX2 and NOX-4 were up-regulated in the liver and kidney of these rats. In addition, all these metabolic derangements were further augmented when HT was followed by the addition of HFD. This suggested that there was a synergism between HT and the intake of HFD on the development of OS and inflammatory response. The treatment with amla fruit extract significantly restored the redox imbalance and inflammatory signaling and ameliorated OS and inflammatory response, suggesting the use of this natural compound as an alternative remedy or adjuvant for the management of metabolic complications concomitant with HT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.