Abstract

AML1/RUNX1, a member of the core binding factor (CBF) family stimulates myelopoiesis and lymphopoiesis by activating lineage-specific genes. In addition, AML1 induces S phase entry in 32Dcl3 myeloid or Ba/F3 lymphoid cells via transactivation. We now found that AML1 levels are regulated during the cell cycle. 32Dcl3 and Ba/F3 cell cycle fractions were prepared using elutriation. Western blotting and a gel shift/supershift assay demonstrated that endogenous CBF DNA binding and AML1 levels were increased 2-4-fold in S and G(2)/M phase cells compared with G(1) cells. In addition, G(1) arrest induced by mimosine reduced AML1 protein levels. In contrast, AML1 RNA did not vary during cell cycle progression relative to actin RNA. Analysis of exogenous Myc-AML1 or AML1-ER demonstrated a significant reduction in G(1) phase cells, whereas levels of exogenous DNA binding domain alone were constant, lending support to the conclusion that regulation of AML1 protein stability contributes to cell cycle variation in endogenous AML1. However, cytokine-dependent AML1 phosphorylation was independent of cell cycle phase, and an AML1 mutant lacking two ERK phosphorylation sites was still cell cycle-regulated. Inhibition of AML1 activity with the CBFbeta-SMMHC or AML1-ETO oncoproteins reduced cyclin D3 RNA expression, and AML1 bound and activated the cyclin D3 promoter. Signals stimulating G(1) to S cell cycle progression or entry into the cell cycle in immature hematopoietic cells might do so in part by inducing AML1 expression, and mutations altering pathways regulating variation in AML1 stability potentially contribute to leukemic transformation.

Highlights

  • AML1/RUNX1, a member of the core binding factor (CBF) family stimulates myelopoiesis and lymphopoiesis by activating lineage-specific genes

  • Endogenous CBF DNA Binding and AML1 Increase During G1 to S Progression—We employed counterflow elutriation to fractionate 32Dcl3 and Ba/F3 cells into cell cycle fractions based on density

  • A key finding of this study is that endogenous CBF DNA binding and AML1 protein levels reproducibly increase 3-fold, when normalized to total protein content, during the G1 to S cell cycle transition

Read more

Summary

Introduction

AML1/RUNX1, a member of the core binding factor (CBF) family stimulates myelopoiesis and lymphopoiesis by activating lineage-specific genes. Western blotting and a gel shift/supershift assay demonstrated that endogenous CBF DNA binding and AML1 levels were increased 2– 4-fold in S and G2/M phase cells compared with G1 cells.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call