Abstract
The effect of amitrole, known as an inhibitor of carotenoid biosynthesis, upon tetrapyrrole biosynthesis and its regulation has been studied. Etiolated barley (Hordeum vulgare L.) seedlings, grown in 125 microM amitrole, accumulated high levels of 5-aminolevulinate, Mg-protoporphyrin, Mg-protoporphyrin monomethyl ester, and protochlorophyllide. The amitrole-treated seedlings did not form paracrystalline prolamellar bodies, and the induction of Lhc and RbcS gene expression was reduced by non-photooxidative, low-intensity light. None of these events was observed upon treatment of the seedlings with 100 microM norflurazon, another inhibitor of carotenoid biosynthesis. The effect of amitrole cannot be explained solely by interaction with a presumed feedback inhibition of 5-aminolevulinate synthesis since incubation with amitrole and 5-aminolevulinate indicated that deregulation also occurs at later steps of tetrapyrrole biosynthesis. A possible relationship between this deregulation and ultrastructural changes is discussed. In connection with previously published data, we discuss Mg-protoporphyrin and its monomethyl ester as possible candidates for a "plastid signal" that operates as a negative factor, reducing the expression of Lhc and RbcS genes in this higher plant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.