Abstract

The antidepressant amitriptyline is a widely used selective serotonin reuptake inhibitor that is found in the aquatic environment. The present study investigates alterations in the brain and the liver metabolome of gilt-head bream (Sparus aurata) after exposure at an environmentally relevant concentration (0.2 µg/L) of amitriptyline for 7 d. Analysis of variance-simultaneous component analysis is used to identify metabolites that distinguish exposed from control animals. Overall, alterations in lipid metabolism suggest the occurrence of oxidative stress in both the brain and the liver-a common adverse effect of xenobiotics. However, alterations in the amino acid arginine are also observed. These are likely related to the nitric oxide system that is known to be associated with the mechanism of action of antidepressants. In addition, changes in asparagine and methionine levels in the brain and pantothenate, uric acid, and formylisoglutamine/N-formimino-L-glutamate levels in the liver could indicate variation of amino acid metabolism in both tissues; and the perturbation of glutamate in the liver implies that the energy metabolism is also affected. These results reveal that environmentally relevant concentrations of amitriptyline perturb a fraction of the metabolome that is not typically associated with antidepressant exposure in fish. Environ Toxicol Chem 2019;00:1-13. © 2019 SETAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.