Abstract

A family of new fluorescently labeled ligands, HRDATI, was prepared to develop transition-metal-based NO sensing strategies. The ligands are composed of aminotroponiminates (ATIs) with a dansyl fluorophore on one of the imine nitrogen atoms and an alkyl substituent, either i-Pr (8), t-Bu (9), or Bz (10), on the other. Bis(chelate) Co2+ ([Co(i-PrDATI)2] (12), [Co(t-BuDATI)2] (14), [Co(BzDATI)2] (15)) and Zn2+ ([Zn(i-PrDATI)2] (13)) complexes were prepared and characterized by X-ray crystallography. The bis(ATI) complex [Co(i-Pr2ATI)2] (11) was also prepared and its X-ray crystal structure determined. Cyclic voltammetry reveals reversible redox waves at -2.57 and -0.045 V (vs Cp2Fe/Cp2Fe+) in THF for the Co2+/Co+ and Co3+/Co2+ couples, respectively, of 11. Only a Co2+/Co+ wave at -2.09 V is observed for 12. When excited at 350 nm, the HRDATI ligands and the diamagnetic Zn2+ complex 13 fluoresce around 500 nm, whereas the paramagnetic Co2+ complexes quench the fluorescence. These air-stable cobalt compounds react with nitric oxide to dissociate a DATI ligand and form neutral dinitrosyl complexes, [Co(NO)2(RDATI)]. The release of the fluorophore-containing ligand is accompanied by an increase in fluorescence intensity, thus providing a strategy for fluorescent NO sensing. Linking two DATI moieties via a tetramethylene chain affords the ligand H2DATI-4 (18). The Co2+ complex [Co(DATI-4)] (19) reacts more readily with NO than the bis(DATI) compounds and also displays an increase in fluorescence intensity upon NO binding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call