Abstract

During the current study, the new aminothiazole Schiff base ligands (S1) and (S2) were designed by reacting 1,3-thiazol-2-amine and 6-ethoxy-1,3-benzothiazole-2-amine separately with 3-methoxy-2-hydroxybenzaldehyde in good yields (68–73%). The ligands were characterized through various analytical, physical, and spectroscopic (FT-IR, UV–Vis, 1H and 13C NMR, and MS) methods. The ligands were exploited in lieu of chelation with bivalent metal (cobalt, nickel, copper, and zinc) chlorides in a 1:2 (M:L) ratio. The spectral (UV–Vis, FT-IR, and MS), as well as magnetic, results suggested their octahedral geometry. The theoretically optimized geometrical structures were examined using the M06/6-311G+(d,p) function of density function theory. Their bioactive nature was designated by global reactivity parameters containing a high hardness (η) value of 1.34 eV and a lower softness (σ) value of 0.37 eV. Different microbial species were verified for their potency (in vitro), revealing a strong action. The Gram-positive Micrococcus luteus and Gram-negative Escherichia coli gave the highest activities of 20 and 21 mm for compounds (8) and (7), respectively. The antifungal activity against the Aspergillus niger and Aspergillus terreus species gave the highest activities of 20 and 18 mm for compounds (7) and (6), respectively. The antioxidant activity, evaluated as DPPH and ferric reducing power, gave the highest inhibition (%) as 72.0 ± 0.11% (IC50 = 144 ± 0.11 μL) and 66.3% (IC50 = 132 ± 0.11 μL) for compounds (3) and (8), respectively. All metal complexes were found to be more biocompatible than free ligands due to their chelation phenomenon. The energies of LUMOs had a link with their activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.