Abstract

Interfacial modification is crucial for improving the photovoltaic performance. In this work, we present an aminosilane as a molecular linker between the ZnO electron-transport layer and fullerene derivative phenyl-C71-butyric acid methyl ester (PC71BM)-based active layer for efficient inverted polymer solar cells. An enhancement in the power-conversion efficiency (PCE), from 8.47 to 9.46%, was achieved on using PTB7-Th as donors. The aminosilane molecular linker provides dual functionalities for enhanced PCE, including (1) passivating the ZnO surface and decreasing the surface work function of ZnO for energy-level alignment and (2) bonding onto the fullerene derivative PC71BM-based active layer to reduce the interface contact resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.