Abstract

Aminoquinoline (AQ) resistance is one of the most important factors in the worldwide resurgence of malaria due to Plasmodium falciparum. We synthesized a series of AQs to define the structure-activity relationships responsible for AQ action against chloroquine-susceptible and -resistant P. falciparum. The AQs with ethyl, propyl, isopropyl, butyl, pentyl, isopentyl (chloroquine), hexyl, octyl, decyl, or dodecyl side chains were equally active against chloroquine-susceptible P. falciparum (50% inhibitory concentrations [IC50s] = 5-15 nM). The AQs with ethyl, propyl, isopropyl, decyl, or dodecyl side chains were also active against chloroquine-, mefloquine- and multiply-resistant P. falciparum (IC50s = 5-20 nM). Verapamil, which enhances the activity of chloroquine against chloroquine-resistant parasites, had no effect on the activity of AQs that were active against resistant parasites. These results indicate that AQs with 2-12 carbon side chains are as active as chloroquine against chloroquine-susceptible P. falciparum, and that AQs with side chains shorter or longer than chloroquine are often active against chloroquine-, mefloquine-, and multiply-resistant P. falciparum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call