Abstract

Self-incompatibility (SI) is genetically determined reproductive barrier preventing inbreeding and thereby providing the maintenance of plant species diversity. At present, active studies of molecular bases of SI mechanisms are underway. S-RNAse-based SI in Petunia hybrida L. is a self-/non-self recognition system that allows the pistil to reject self pollen and to accept non-self pollen for outcrossing. In the present work, using fluorescent methods including the TUNEL method allowed us to reveal the presence of markers of programmed cell death (PCD), such as DNA fragmentation, in growing in vivo petunia pollen tubes during the passage of the SI reaction. The results of statistical analysis reliably proved that PCD is the factor of S-RNAse-based SI. It was found that preliminary treatment before self-pollination of stigmas of petunia self-incompatible line with aminooxyacetic acid (AOA), inhibitor of ACC synthesis, led to stimulation of pollen tubes growth when the latter did not exhibit any hallmarks of PCD. These data argue in favor of assumption that ethylene controls the passage of PCD in incompatible pollen tubes in the course of S-RNAse-based SI functioning. The involvement of the hormonal regulation in SI mechanism in P. hybrida L. is the finding observed by us for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.