Abstract

The response rate of aminolaevulinic acid (ALA)-based photodynamic therapy (PDT) in certain subtypes of actinic keratosis (AK), such as hypertrophic and hyperkeratotic lesions, is variable, an effect attributable to a supposed lack of ALA penetration. A detailed and depth-related profile of spatial ALA permeation in AK following drug administration would lead to a greater understanding of concentrations achievable before protoporphyrin IX biosynthesis and subsequent PDT. ALA penetration through excised normal human skin (NS) and AK lesions was evaluated using a cryostatic sectioning technique and radio-isotope counting following drug delivery using a novel, bioadhesive patch, loaded with 19, 38 or 50 mg/cm(2) ALA. Distinct differences in ALA concentration with respect to depth between AK and NS samples were shown, particularly within the superficial layers of the tissue structure, down to a depth of 1.0 mm. Patch application times were shown to influence ALA concentrations in tissue, but there was no clear correlation between ALA penetration in AK lesions taken from different body locations and from patients of different age. Similarly, the thickness of stratum corneum was not related to the ALA distribution profiles. Sizable variation in ALA concentration was a prominent feature of profiles through AK lesions, which may explain the variation of observed protoporphyrin IX production seen in the clinical implementation of AK PDT. That said, the results of this study show sufficient ALA penetration to a depth of 1.0 mm, which should be satisfactory for successful treatment of the majority of non-hyperkeratotic, hypertrophic AK using patch-based delivery methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.