Abstract

Objective The mechanisms whereby advanced glycation end products (AGE) contribute to atherogenesis in diabetes mellitus are not fully understood. In this study we analyzed in vitro the influence of advanced glycated albumin (AGE-albumin) as well as the role of the AGE inhibitors – aminoguanidine (AMG) and metformin (MF) – on the cell cholesterol efflux. Methods HDL 3 and albumin-mediated cholesterol efflux was measured in mouse peritoneal macrophages and in SR-BI transfected cells that had been treated along time with dicarbonyl sugars or AGE-albumin, both in the presence or in the absence of AMG and MF. 125I-HDL 3 cell binding and 125I-AGE-albumin cell degradation were measured. Carboxymethyllysine (CML) formation and SR-BI expressions were determined by immunoblot. Results AGE-albumin efficiently trapped cell cholesterol but impaired the HDL-mediated cell cholesterol efflux by decreasing HDL binding to the cell surface and inducing intracellular glycoxidation, without interfering with the SR-BI expression. Cell treatment with dicarbonyl sugars also disrupted the HDL-mediated cell cholesterol efflux, but this was prevented by AMG and MF that reduced CML formation. Conclusions By adversely impairing the HDL-mediated cell cholesterol removal rate, AGE-albumin and cell glycoxidation could facilitate the development of premature atherosclerosis in diabetes mellitus (DM) and in other diseases associated with carbonyl and oxidative stress like in chronic uremia. Thus, drugs that prevent AGE formation may be useful to correct disturbances in cell cholesterol transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.