Abstract

To understand better the mechanisms of resistance-nodulation-division (RND)-type multidrug efflux pumps, we examined the Escherichia coli AcrD pump, whose typical substrates, aminoglycosides, are not expected to diffuse spontaneously across the lipid bilayer. The hexahistidine-tagged AcrD protein was purified and reconstituted into unilamellar proteoliposomes. Its activity was measured by the proton flux accompanying substrate transport. When the interior of the proteoliposomes was acidified, the addition of aminoglycosides to the external medium stimulated proton efflux and the intravesicular accumulation of radiolabeled gentamicin, suggesting that aminoglycosides can be captured and transported from the external medium in this system (corresponding to cytosol). This activity required the presence of AcrA within the proteoliposomes. Interestingly, the increase in proton efflux also occurred when aminoglycosides were present only in the intravesicular space. This result suggested that AcrD can also capture aminoglycosides from the periplasm to extrude them into the medium in intact cells, acting as a "periplasmic vacuum cleaner."

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.