Abstract

Abstract A series of polyimide-POSS (PI-POSS) nanocomposite membranes were prepared using aminoethylaminopropylisobutyl group functionalized polyhedral oligomeric silsesquioxanes (POSS) as nanofiller. The membranes were characterized by DSC, TGA, AFM, FESEM, XRD, etc. The effects of incorporation of POSS into the four structurally different fluorinated polyimide membranes on their gas transport properties with four gases (CH4, N2, O2 and CO2) were investigated at 35 °C and at an applied pressure of 3.5 atm. All the nanocomposite membranes showed comparable glass transition temperature values but a little lower thermo-oxidative stability compared to their corresponding untreated polyimide membranes. The Young's modulus and maximum stress values of the polyimide-POSS membrane were slightly higher than those of the virgin polyimide membranes; however the elongation at break values were lower. POSS nanoparticles were well distributed as observed from FESEM image and AFM study exhibited no significant increase of the roughness of the hybrid membranes. The order of permeability of these gases were found as CO2 > O2 > N2 > CH4. The permeability of all the gases through the composite membranes increased significantly with comparable selectivity for different gas pairs, e.g., CO2/CH4 and O2/N2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.