Abstract

Organic halides are important building blocks in synthesis, but their use in (photo)redox chemistry is limited by their low reduction potentials. Halogen-atom transfer remains the most reliable approach to exploit these substrates in radical processes despite its requirement for hazardous reagents and initiators such as tributyltin hydride. In this study, we demonstrate that α-aminoalkyl radicals, easily accessible from simple amines, promote the homolytic activation of carbon-halogen bonds with a reactivity profile mirroring that of classical tin radicals. This strategy conveniently engages alkyl and aryl halides in a wide range of redox transformations to construct sp3-sp3, sp3-sp2, and sp2-sp2 carbon-carbon bonds under mild conditions with high chemoselectivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.