Abstract

Subcellular fractionation of pig kidney cortex revealed that aminoacylase I (EC 3.5.1.14, N- acyl- l - amino- acid aminohydrolase) is predominantly a soluble enzyme with only 0.5% of the total activity being recovered in the membrane fraction. The aminoacylase I activity associated with the membrane preparations displayed neither rapid release following incubation with phosphatidylinositol-specific phospholipase C from Bacillus thuringuensis nor the distinctive differential pattern of detergent solubilization which was seen with glycosyl-phosphatidylinositol-anchored proteins (renal dipeptidase, alkaline phosphatase). When fractionated by phase separation in Triton X-114, integral membrane proteins of kidney microvillar membranes partitioned predominantly (> 90%) into the detergent-rich phase. In contrast, only 3.7% of aminoacylase I activity associated with microvillar membranes partitioned into the detergent-rich phase. Aminoacylase I activity of pig kidney would therefore appear to be a hydrophilic protein in nature and is not, as suggested previously, a G-PI-anchored integral membrane protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call