Abstract

Upon Ag exposure, most memory T cells undergo restimulation-induced cell death. In this article, we describe a novel synthetic agonist, an N-terminal extended decamer peptide expressed as a single-chain trimer, the amino-terminal extended peptide MHC class I single-chain trimer (AT-SCT), which preferentially promotes the growth of memory human CD8(+) T cells with minimal restimulation-induced cell death. Using CMV pp65 and melanoma gp100 Ags, we observe the in vitro numerical expansion of a clonally diverse polyfunctional population of Ag-specific CD8(+) T cells from healthy individuals and vaccinated melanoma patients, respectively. Memory CD8(+) T cells stimulated with AT-SCT presented on MHC class I/II-null cells show reduced cytokine production, slower kinetics of TCR downregulation, and decreased cell death compared with native nonamer MHC class I single-chain trimer (SCT)-activated T cells. However, both ERK phosphorylation and cell cycle kinetics are identical in AT-SCT- and SCT-activated T cells. Probing of SCT and AT-SCT peptide-MHC complexes using fluorochrome-conjugated TCR multimers suggests that nonamer- and decamer-linked peptides may be anchored differently to the HLA-A2 peptide-binding groove. Our findings demonstrate that modified peptide-MHC structures, such as AT-SCT, can be engineered as T cell agonists to promote the growth and expansion of memory human CD8(+) T cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.