Abstract

Multifunctional metal-organic frameworks with luminescence properties are promising materials for the detection and treatment of toxic pollutants in aqueous media. Herein, an adenine-based multifunctional Zn-MOF {[Zn3.5(AIPA)2(Ade)3(H2O)2]n using linkers adenine (Ade) and 5-aminoisophthalic acid (AIPA)} was prepared that could selectively detect particular classes of explosives and antibiotics, namely, nitrophenols, tetracyclines and nitrofurans. Moreover, the as-synthesized Zn-MOF displayed a remarkable efficiency for the treatment of antibiotics in water through adsorption and photocatalytic degradation. A subtle balance between photoinduced electron transfer (PET), resonance energy transfer (RET) and competitive excitation energy absorption enabled detection selectivity towards the pollutants. On the other hand, intermolecular interactions of free functional groups assisted the treatment process and thereby highlighted the crucial role of the linkers in furnishing multifunctional behavior without the need for any postsynthetic modifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.