Abstract

This paper describes the design and synthesis of compounds belonging to a novel class of highly selective mammalian CD13 inhibitors. Racemic homologues of 3-amino-2-tetralone 1 were synthesised and evaluated for their ability to selectively inhibit the membrane-bound, zinc-dependent aminopeptidase-N/CD13 (EC 3.4.11.2). Some of these novel non-peptidic compounds are potent, competitive inhibitors of the mammalian enzyme, with Ki values in the low micromolar range in spite of their minimal size (MW <200Da). Moreover, they show an interesting selectivity profile against representative members of the aminopeptidase family, that is leucine aminopeptidase (EC 3.4.11.1), Aeromonas proteolytica aminopeptidase (EC 3.4.11.10) and the aminopeptidase activity of leukotriene A4 hydrolase (EC 3.3.2.6). The amino-benzosuberone derivative 4 is the most promising compound in terms of potency, stability and selectivity. A hypothetical binding mode of 4 to the catalytic zinc and several conserved active site residues is proposed, based on the observed structure–activity relationships, structural insights from aminopeptidase-N homologues of known three-dimensional structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.