Abstract

We report the synthesis and characterization of several amino alcohol-derived reduced Schiff base ligands (AORSB) and the corresponding V(IV)O and V(V) complexes. Some of the related Schiff base variants (amino alcohol derived Schiff base = AOSB) were also prepared and characterized. With some exceptions, all compounds are formulated as dinuclear compounds {V(IV)O(L)}(2) in the solid state. Suitable crystals for X-ray diffraction were obtained for two of the AORSB compounds, as well as a rare X-ray structure of a chiral V(IV)O compound, which revealed a dinuclear {V(IV)O(AOSB)}(2) structure with a rather short V-V distance of 3.053(9) Å. Electron paramagnetic resonance (EPR), (51)V NMR, and density functional theory (DFT) studies were carried out to identify the intervenient species prior to and during catalytic reactions. The quantum-chemical DFT calculations were important to determine the more stable isomers in solution, to explain the EPR data, and to assign the (51)V NMR chemical shifts. The V(AORSB) and V(AOSB) complexes were tested as catalysts in the oxidation of thioanisole, with H(2)O(2) as the oxidant in organic solvents. In general, high conversions of sulfoxide were obtained. The V(AOSB) systems exhibited greater activity and enantioselectivity than their V(AORSB) counterparts. Computational and spectroscopic studies were carried out to assist in the understanding of the mechanistic aspects and the reasons behind such marked differences in activity and enantioselectivity. The quantum-chemical calculations are consistent with experimental data in the assessment of the differences in catalytic activity between V(AOSB) and V(AORSB) peroxido variants because the V(AORSB) peroxido transition states correspond to ca. 22 kJ/mol higher energy activation barriers than their V(AOSB) counterparts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.