Abstract

Hydroxylamine stability has been used to classify (ADP-ribose)protein bonds into sensitive and resistant linkages, with the former representing (ADP-ribose)glutamate, and the latter, (ADP-ribose)arginine. Recently, it was shown that cysteine also serves as an ADP-ribose acceptor. The hydroxylamine stability of [cysteine([32P]ADP-ribose)]protein and [arginine([32P] ADP-ribose)]protein bonds was compared. In transducin, pertussis toxin catalyzes the ADP-ribosylation of a cysteine residue, whereas choleragen (cholera toxin) modifies an arginine moiety. The (ADP-ribose)cysteine bond formed by pertussis toxin was more stable to hydroxylamine than was the (ADP-ribose)arginine bond formed by choleragen. The (ADP-ribose)cysteine bond apparently represents a third class of ADP-ribose bonds. Pertussis toxin ADP-ribosylates the inhibitory guanyl nucleotide-binding regulatory protein (Gi) of adenylate cyclase, whereas choleragen modifies the stimulatory guanyl nucleotide-binding regulatory protein (Gs). These (ADP-ribose)protein linkages are identical in stability to those formed in transducin by the two toxins, consistent with the probability that cysteine and arginine are modified in Gi and Gs, respectively. Bonds exhibiting differences in hydroxylamine-stability were found in membranes from various non-intoxicated mammalian cells following incubation with [32P]NAD, which may reflect the presence of endogenous NAD:protein-ADP-ribosyl-transferases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.