Abstract

Amino acids (AAs) not only serve as building blocks for protein synthesis in microorganisms but also play important roles in their metabolism, survival, inter-species crosstalk, and virulence. Different AAs have their distinct functions in microbes of the digestive tract and this in turn has important impacts on host nutrition and physiology. Deconjugation and re-conjugation of glycine- or taurine- conjugated bile acids in the process of their enterohepatic recycling is a good example of the bacterial adaptation to harsh gut niches, inter-kingdom cross-talk with AA metabolism, and cell signaling as the critical control point. It is also a big challenge for scientists to modulate the homeostasis of the pools of AAs and their metabolites in the digestive tract with the aim to improve nutrition and regulate AA metabolism related to anti-virulence reactions. Diversity of the metabolic pathways of AAs and their multi-functions in modulating bacterial growth and survival in the digestive tract should be taken into consideration in recommending nutrient requirements for animals. Thus, the concept of functional amino acids can guide not only microbiological studies but also nutritional and physiological investigations. Cutting edge discoveries in this research area will help to better understand the mechanisms responsible for host-microbe interactions and develop new strategies for improving the nutrition, health, and well-being of both animals and humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.