Abstract

Human glutamate carboxypeptidase II (GCPII) is a co-catalytic metallopeptidase and its putative catalytic domain is homologous to the aminopeptidases from Vibrio proteolyticus and Streptomyces griseus. In humans, the enzyme is expressed predominantly in the nervous system and the prostate. The prostate form, termed prostate-specific membrane antigen, is overexpressed in prostate cancer and is used as a diagnostic marker of the disease. Inhibition of the form of GCPII expressed in the central nervous system has been shown to protect against ischemic injury in experimental animal models. Human GCPII consists of 750 amino acids, and six individual domains were predicted to constitute the protein structure. Here, we report the analysis of the contribution of these putative domains to the structure/function of recombinant human GCPII. We cloned 13 mutants of human GCPII that are truncated or extended at one or both the N- and C-termini of the GCPII sequence. The clones were used to generate stably transfected Drosophila Schneider's cells, and the expression and carboxypeptidase activities of the individual protein products were determined. The extreme C-terminal region of human GCPII was found to be critical for the hydrolytic activity of the enzyme. The deletion of as few as 15 amino acids from the C-terminus was shown to completely abolish the enzymatic activity of GCPII. Furthermore, the GCPII carboxypeptidase activity was abrogated upon removal of more than 60 amino acid residues from the N-terminus of the protein. Overall, these results clearly show that amino acid segments at the N- and C-termini of the ectodomain of GCPII are essential for its carboxypeptidase activity and/or proper folding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.